The crust of the Earth is composed of a great variety of igneous, metamorphic, and sedimentary rocks. The crust is underlain by the mantle. The upper part of the mantle is composed mostly of peridotite, a rock denser than rocks common in the overlying crust. The boundary between the crust and mantle is conventionally placed at the Mohorovičić discontinuity, a boundary defined by a contrast in seismic velocity. The crust occupies less than 1% of Earth's volume.
The oceanic crust of the sheet is different from its continental crust. The oceanic crust is 5 km (3 mi) to 10 km (6 mi) thick and is composed primarily of basalt, diabase, and gabbro. The continental crust is typically from 30 km (20 mi) to 50 km (30 mi) thick and is mostly composed of slightly less dense rocks than those of the oceanic crust. Some of these less dense rocks, such as granite, are common in the continental crust but rare to absent in the oceanic crust. Both the continental and oceanic crust "float" on the mantle. Because the continental crust is thicker, it extends both above and below the oceanic crust. The slightly lighter density of felsic continental rock compared to basaltic ocean rock contributes to the higher relative elevation of the top of the continental crust. Because the top of the continental crust is above that of the oceanic, water runs off the continents and collects above the oceanic crust. The continental crust and the oceanic crust are sometimes called sial andsima respectively. Because of the change in velocity of seismic waves it is believed that on continents at a certain depth sial becomes close in its physical properties to sima, and the dividing line is called the Conrad discontinuity.
The temperature of the crust increases with depth, reaching values typically in the range from about 200 °C (392 °F) to 400 °C(752 °F) at the boundary with the underlying mantle. The crust and underlying relatively rigid uppermost mantle make up thelithosphere. Because of convection in the underlying plastic (although non-molten) upper mantle and asthenosphere, the lithosphere is broken into tectonic plates that move. The temperature increases by as much as 30 °C (about 50 °F) for every kilometer locally in the upper part of the crust, but the geothermal gradient is smaller in deeper crust.
Partly by analogy to what is known about our Moon, Earth is considered to have differentiated from an aggregate of planetesimalsinto its core, mantle and crust within about 100 million years of the formation of the planet, 4.6 billion years ago. The primordialcrust was very thin and was probably recycled by much more vigorous plate tectonics and destroyed by significant asteroidimpacts, which were much more common in the early stages of the solar system.
The Earth has probably always had some form of basaltic crust, but the age of the oldest oceanic crust today is only about 200 million years. In contrast, the bulk of the continental crust is much older. The oldest continental crustal rocks on Earth have ages in the range from about 3.7 to 4.28 billion years and have been found in the Narryer Gneiss Terrane in Western Australia, in the Acasta Gneiss in the Northwest Territories on the Canadian Shield, and on other cratonic regions such as those on theFennoscandian Shield. Some zircon with age as great as 4.3 billion years has been found in the Narryer Gneiss Terrane.
The average age of the current Earth's continental crust has been estimated to be about 2.0 billion years. Most crustal rocks formed before 2.5 billion years ago are located in cratons. Such old continental crust and the underlying mantle asthenosphere are less dense than elsewhere in the earth and so are not readily destroyed by subduction. Formation of new continental crust is linked to periods of intense orogeny; these periods coincide with the formation of the supercontinents such as Rodinia, Pangaeaand Gondwana. The crust forms in part by aggregation of island arcs including granite and metamorphic fold belts, and it is preserved in part by depletion of the underlying mantle to form buoyant lithospheric mantle.
Composition
The continental crust has an average composition similar to that of andesite. Continental crust is enriched in incompatible elements compared to the basaltic ocean crust and much enriched compared to the underlying mantle. Although the continental crust comprises only about 0.6 weight percent of the silicate on Earth, it contains 20% to 70% of the incompatible elements.
Oxide | Percent |
---|---|
SiO2 | 60.6 |
Al2O3 | 15.9 |
CaO | 6.4 |
MgO | 4.7 |
Na2O | 3.1 |
Fe as FeO | 6.7 |
K2O | 1.8 |
TiO2 | 0.7 |
P2O5 | 0.1 |
All the other constituents except water occur only in very small quantities and total less than 1%. Estimates of average density for the upper crust range between 2.69 and 2.74 g/cm3 and for lower crust between 3.0 and 3.25 g/cm3.
No comments:
Post a Comment